Laplace transform

Syllabus:-

Definition, transform of elementary functions, inverse transforms, transform of derivations, differentiation and integration of transforms, solution of differential equations. Difference between Laplace and Fourier transform.

Laplace transform:-

If f(t) be the real valued function of t' . Then Laplace transform of f(t) denoted by $L\{f(t)\}$ or F(s) is defined by,

$$L\{f(t)\} = F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

Where *s* may be real or complex number.

Here f(t) can be given by

$$f(t) = L^{-1}{F(s)}$$

Then f(t) is called as inverse Laplace transform of F(s).

Basic properties of Laplace transform

1) Laplace transform of the sum or difference of time function is equal to the sum or difference of Laplace transform of the individual time functions.

$$L\{f_1(t) + f_2(t) + \dots + f_n(t)\}\$$

= $F_1(s) + F_2(s) + \dots + F_n(s)$

2) Laplace transform of product of constant and time function is equal to product of constant and the Laplace transform of the time function.

$$L\{a f(t)\} = a F(s)$$

3) Linear property : If $F_1(s)$ and $F_2(s)$ be the Laplace transform of $f_1(t)$ and $f_2(t)$ respectively. Then

$$L\{a_1 f_1(t) + a_2 f_2(t)\} = a_1 F_1(s) + a_2 F_2(s)$$

Where a_1 and a_2 are constants.

- 4) First shifting property : $L\{e^{at} f(t)\} = F(s-a)$
- 5) Change of scaling property : $L\{f(at)\} = \frac{1}{a}F\left(\frac{s}{a}\right)$

Laplace transform of elementary functions

1) $L\{a\} = \frac{a}{s}$; where a is constant

Soln:-

$$L\{a\} = \int_{0}^{\infty} e^{-st} a \, dt = -a \left[\frac{e^{-st}}{s} \right]_{0}^{\infty} = -\frac{a}{s} \left[e^{-s \, X \, \infty} - e^{-s \, X \, 0} \right]$$
$$= -\frac{a}{s} \left[0 - 1 \right] = \frac{a}{s}$$

2) $L\{e^{at}\} = \frac{1}{s-a}$; where a is constant

Soln:-

$$L\{e^{at}\} = \int_{0}^{\infty} e^{-st} e^{at} dt = \int_{0}^{\infty} e^{-(s-a)t} dt = -\left[\frac{e^{-(s-a)t}}{(s-a)}\right]_{0}^{\infty}$$
$$= -\frac{1}{(s-a)} \left[e^{-(s-a)X \cdot \infty} - e^{-(s-a)X \cdot 0}\right] = -\frac{1}{(s-a)} [0-1]$$
$$= \frac{1}{(s-a)}$$

3)
$$L\{1\} = \frac{1}{s}$$

Soln:-

$$L\{1\} = \int_{0}^{\infty} e^{-st} 1 \, dt = -\left[\frac{e^{-st}}{s}\right]_{0}^{\infty} = -\frac{1}{s} \left[e^{-s \, X \, \infty} - e^{-s \, X \, 0}\right]$$
$$= -\frac{1}{s} \left[0 - 1\right] = \frac{1}{s}$$

4)
$$L\{t\} = \frac{1}{s^2}$$

Soln:-

$$L\{t\} = \int_{0}^{\infty} e^{-st}t \, dt = -\frac{t}{s} [e^{-st}]_{0}^{\infty} + \frac{1}{s} \int_{0}^{\infty} e^{-st} \, dt$$

$$= -\frac{t}{s} [e^{-s \times x} - e^{-s \times x}] - \frac{1}{s^{2}} [e^{-st}]_{0}^{\infty}$$

$$= -\frac{t}{s} [0 - 1] - \frac{1}{s^{2}} [0 - 1]$$

$$= \frac{t}{s} + \frac{1}{s^{2}}$$

5)
$$L\{t^n\} = \frac{n!}{s^{n+1}}$$

Soln :-

$$L\{t^n\} = \int_{0}^{\infty} e^{-st} t^n dt = -\frac{1}{s} [t^n e^{-st}]_{0}^{\infty} + \frac{n}{s} \int_{0}^{\infty} e^{-st} t^{n-1} dt$$

$$= 0 + \frac{n}{s} \int_{0}^{\infty} e^{-st} t^{n-1} dt$$

$$= +\frac{n}{s} \left[-\frac{1}{s} [t^{n-1}e^{-st}]_0^{\infty} + \frac{(n-1)}{s} \int_0^{\infty} e^{-st} t^{n-2} dt \right]$$
$$= \frac{n}{s} \left[0 + \frac{(n-1)}{s} \int_0^{\infty} e^{-st} t^{n-2} dt \right]$$

$$=\frac{n(n-1)}{s}\int_{0}^{\infty}e^{-st}\ t^{n-2}dt$$

$$= \frac{n(n-1)(n-2)\dots 1}{s^n} \int_{0}^{\infty} e^{-st} dt$$
$$= \frac{n!}{s^n} \frac{1}{s} = \frac{n!}{s^{n+1}}$$

Other method

$$L\{t^n\} = \int_0^\infty e^{-st} t^n dt$$

Let =
$$r$$
 , dt= $\frac{dr}{s}$

$$= \int_{0}^{\infty} e^{-r} \left(\frac{r}{s}\right)^{n} \frac{dr}{s}$$

$$= \frac{1}{s^{n+1}} \int_{0}^{\infty} e^{-r} r^{n} dr = \frac{n!}{s^{n+1}} \qquad \qquad \because \int_{0}^{\infty} e^{-r} r^{n} dr = n!$$

$$\because \int_{0}^{\infty} e^{-r} r^{n} dr = n!$$

6)
$$L\{\sin at\} = \frac{a}{s^2 + a^2}$$

$$L\{\sin at\} = \int_{0}^{\infty} e^{-st} \sin at \ dt = \frac{a}{s^2 + a^2}$$

 $\int_0^\infty e^{-st} \sin at \ dt \ \text{can be found by substituting } \sin at = \frac{e^{iat} - e^{-iat}}{2^i}$

7)
$$L(\cos at) = \frac{s}{s^2 + a^2}$$

$$L\{\sin at\} = \int_{0}^{\infty} e^{-st} \cos at \ dt = \frac{s}{s^2 + a^2}$$

 $\int_0^\infty e^{-st} \sin at \ dt \ \text{can be found by substituting } \cos at = \frac{e^{iat} + e^{-iat}}{2}$

Laplace transform of few other functions

1)
$$L\{e^{at} t^n\} = \frac{n!}{(s-a)^{n+1}}$$

2)
$$L\{e^{at}\sin bt\} = \frac{b}{(s-a)^2 + b^2}$$

3)
$$L\{e^{at}\cos bt\} = \frac{(s-a)}{(s-a)^2 + b^2}$$

4)
$$L\{e^{at} \sinh bt\} = \frac{b}{(s-a)^2 - b^2}$$

5)
$$L\{e^{at}\cosh bt\} = \frac{(s-a)}{(s-a)^2 - b^2}$$

Inverse Laplace transform

If $L\{f(t)\}\$ or F(s) is Laplace transform of f(t), then $L^{-1}\{f(t)\}=F(s)$. Here L^{-1} is called inverse Laplace transform.

Basics Laplace inverse transforms

1)
$$L^{-1}\left\{\frac{1}{s}\right\} = 1$$

2)
$$L^{-1}\left\{\frac{1}{(s-a)}\right\} = e^{at}$$

3)
$$L^{-1}\left\{\frac{1}{s^n}\right\} = \frac{t^{n-1}}{(n-1)!}$$

3)
$$L^{-1}\left\{\frac{1}{s^n}\right\} = \frac{t^{n-1}}{(n-1)!}$$
 4) $L^{-1}\left\{\frac{1}{(s-a)^n}\right\} = \frac{e^{at}t^{n-1}}{(n-1)!}$

5)
$$L^{-1}\left\{\frac{1}{s^2+a^2}\right\} = \frac{1}{a}\sin at$$
 6) $L^{-1}\left\{\frac{s}{s^2+a^2}\right\} = \cos at$

6)
$$L^{-1}\left\{\frac{s}{s^2+a^2}\right\} = \cos as$$

7)
$$L^{-1}\left\{\frac{1}{s^2-a^2}\right\} = \frac{1}{a}\sinh at$$
 8) $L^{-1}\left\{\frac{s}{s^2-a^2}\right\} = \cosh at$

8)
$$L^{-1}\left\{\frac{s}{s^2-a^2}\right\} = \cosh at$$

9)
$$L^{-1}\left\{\frac{1}{(s-a)^2+b^2}\right\} = \frac{1}{b}e^{at}\sin bt$$
 10) $L^{-1}\left\{\frac{s-a}{(s-a)^2+b^2}\right\} = e^{at}\cos bt$

$$10)L^{-1}\left\{\frac{s-a}{(s-a)^2+b^2}\right\} = e^{at}\cos bt$$

11)
$$L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\} = \frac{1}{2a}t\sin at$$

11)
$$L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\} = \frac{1}{2a}t\sin at$$
 12) $L^{-1}\left\{\frac{1}{(s^2+a^2)^2}\right\} = \frac{1}{2a^3}(\sin at - at\cos at)$

Complicated inverse Laplace transforms can be found by partial fraction method.

Laplace transform of a derivative

Let f'(t) be the first derivative of f(t). Then

$$L\{f'(t)\} = \int_{0}^{\infty} e^{-st} f'(t) dt = [e^{-st} f(t)]_{0}^{\infty} + s \int_{0}^{\infty} e^{-st} f(t) dt$$

$$= [e^{-s X \infty} f(\infty) - e^{-s X 0} f(0)] + sF(s)$$

$$= -f(0) + s F(s)$$

$$= s F(s) - f(0)$$

In general for n^{th} derivative is given by

$$L\{f^n(t)\} = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) \dots \dots f^n(0)$$

Derivative of Laplace transform

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

Differentiating on both side wrt s, we get

$$F'(s) = \frac{d}{ds} \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{\infty} f(t) \frac{d}{ds} (e^{-st}) dt$$

$$= \int_{0}^{\infty} f(t) - t e^{-st} dt$$

$$F'(s) = L\{-tf(t)\}\$$

Differentiating on both side wrt s, we get

$$F''(s) = -\frac{d}{ds} \int_{0}^{\infty} f(t)t e^{-st} dt$$

$$= -\int_{0}^{\infty} f(t)t \frac{d}{ds} e^{-st} dt = \int_{0}^{\infty} f(t)t^{2} e^{-st} dt = L\{(-t)^{2}f(t)\}$$

In general n^{th} derivative of F(s) is

$$F^n(s) = L\{(-t)^n f(t)\}$$

Integration of Laplace transform

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

Integrating both side, we get

$$\int_{s}^{\infty} F(s) ds = \int_{s}^{\infty} \left(\int_{0}^{\infty} e^{-st} f(t) dt \right) ds$$

$$= \int_{0}^{\infty} \left(\int_{s}^{\infty} e^{-st} ds \right) f(t) dt = -\int_{0}^{\infty} \frac{1}{t} [e^{-st}]_{s}^{\infty} f(t) dt$$

$$= \int_{0}^{\infty} \frac{1}{t} e^{-st} f(t) dt = L \left\{ \frac{f(t)}{t} \right\}$$

$$\int_{s}^{\infty} F(s) ds = L\left\{\frac{f(t)}{t}\right\}$$

Solution of differential equation

Consider the second order differential equation

$$\frac{d^2y}{dt^2} + a\frac{dy}{dt} + by = r(t)$$

Using Laplace transform,

$$L\{f^{n}(t)\} = s^{n} F(s) - s^{n-1} f(0) - s^{n-2} f'(0) \dots \dots f^{n}(0)$$

We get,

$$s^{2}y(s) - s y(0) - y'(0) + a[s y(s) - y(0)] + by(s) = R(s)$$

$$(s^2 + as + b)y(s) - (s + a)y(0) - y'(0) = R(s)$$

$$(s^2 + as + b)y(s) = (s + a)y(0) + y'(0) + R(s)$$

$$y(s) = \frac{(s+a)y(0) + y'(0)}{(s^2 + as + b)} + \frac{R(s)}{(s^2 + as + b)}$$

$$L(y) = \frac{(s+a)y(0) + y'(0)}{(s^2 + as + b)} + \frac{R(s)}{(s^2 + as + b)}$$

$$y = L^{-1} \left[\frac{(s+a)y(0) + y'(0)}{(s^2 + as + b)} + \frac{R(s)}{(s^2 + as + b)} \right]$$

Relation between Fourier and Laplace transform

$$F\{f(t)\} = \frac{1}{\sqrt{2\pi}} L\left\{\frac{f(t)}{e^{-st}}\right\}$$

Difference between Fourier and Laplace transform

SI. No.	Fourier transform	Laplace transform
1	$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt$	$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$
2	Fourier transform needs	Laplace transform doesn't
	Dirichlet conditions.	need any conditions.
3	Fourier transform does a	Laplace transform does a
	complex transform on real	real transform on complex
	data.	data.
4	Fourier transform converts	Laplace converts time
	time varying function in the	varying function in the
	frequency domain.	integral domain.
5	In Fourier transform, function	In Laplace transform,
	can have finite number	function should have
	discontinuities in each period	definite value over the
		range.
6	Fourier transform is used in	Laplace transform is used
	communication system	in control system.